Solution:
Solution:
For Lyman series
$$\upsilon = Rc\left[\frac{1}{1^{2}} -\frac{1}{n^{2}}\right]$$
where $$n = 2, 3,4,......$$
For the series limit of Lyman series, $$n = \infty$$
$$\therefore\upsilon_{1} = Rc\left[\frac{1}{1^{2}} -\frac{1}{\infty^{2}}\right] = Rc\quad...\left(i\right) $$
For the first line of Lyman series, $$n = 2$$
$$\therefore\upsilon_{2} = Rc\left[\frac{1}{1^{2}} -\frac{1}{2^{2}}\right] = \frac{3}{4}Rc\quad...\left(ii\right) $$
For Balmer series
$$\upsilon = Rc\left[\frac{1}{2^{2}} -\frac{1}{n^{2}}\right]$$
where $$n = 3,4, 5....$$
For the series limit of Balmer series, $$n =\infty$$
$$\therefore \upsilon_{3} = Rc\left[\frac{1}{2^{2}} -\frac{1}{\infty^{2}}\right] = \frac{Rc}{4}\quad...\left(iii\right)$$
From equations $$(i), (ii)$$ and $$(iii)$$, we get
$$\upsilon_{1} = \upsilon_{2} +\upsilon_{3} $$ or
$$ \upsilon_{1} -\upsilon_{2} = \upsilon_{3}$$