Solution:
Solution:
According to Einsteins photoelectric equation
$$\frac{hc}{\lambda}=\phi_{0}+KE_{max}$$
$$\therefore K_{1}=\frac{hc}{\lambda_{1}}-\phi_{0}$$ and $$K_{2}=\frac{hc}{\lambda_{2}}-\phi_{0}$$
or $$K_{1}-K_{2}=hc \left[\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right]$$
$$=hc\left[\frac{1}{3\lambda_{2}}-\frac{1}{\lambda_{2}}\right]=-\frac{2hc}{3\,\lambda_{2}}$$ (Given $$\lambda_{1}=3\lambda_{2}$$)
$$K_{1}-K_{2}=-\frac{2}{3}\left(K_{2}+\phi_{0}\right)$$
or $$K_{1}=K_{2}-\frac{2}{3} \phi_{0} =\frac{K_{2}}{3}-\frac{2}{3} \phi_{0}$$ or $$K_{1}<\, \frac{K_{2}}{3}$$