Solution:
Solution
Theoretical density of a crystal is given by $$\rho = \cfrac {nM}{N_A a^3} \ g/cm^3$$
Given, $$M= 63.5 \ g \ ; \ \rho = 8.93 \ g/cm^3$$
For FCC, $$n=4$$
$$\Rightarrow a^3= \cfrac {4 \times 63.5}{6.022 \times 10^{23} \times 8.93}$$
$$\Rightarrow a = \left (\cfrac {4 \times 63.5}{6.022 \times 10^{23} \times 8.93}\right)^{1/3}= 3.6 \times 10^{-8} \ cm$$
Now, if $$r$$ is radius of copper atom, then in FCC,
$$r = \cfrac {a}{2 \sqrt 2}$$
$$r = \cfrac {3.6}{2 \sqrt 2} \times 10^{-8} \ cm= 127.8 \ pm$$