Solution:
Solution
Given, $$ B = \begin{bmatrix} 3 & -5 & 7 \\ -5 & 0 & -4 \end{bmatrix} $$
$$ => {B}^{T} = \begin{bmatrix} 3 & -5 \\ -5 & 0 \\ 7 & -4 \end{bmatrix} $$
And, $$ A + {B}^{T} = \begin{bmatrix} -3 & 5 \\ 5 & 0 \\ -7 & 4 \end{bmatrix} + \begin{bmatrix} 3 & -5 \\ -5 & 0 \\ 7 & -4 \end{bmatrix} = \begin{bmatrix} -3+3 & 5-5 \\ 5-5 & 0+0 \\ -7+7 & 4-4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} $$
As A has only one column, $$ => a = 1 $$
Thus $$ {B}^{T} $$ has the order $$ a \times n $$ or $$ 1 \times 3 $$,
As $$ {B}^{T} $$ is of order $$ 1 \times 3 $$, then $$ {B} $$ will have the order $$ 3 \times 1 $$
So, B will also have one column
⇒ 1 - cω - aω + acω ≠ 0
⇒ (1 - cω) (1 - aω) ≠ 0
$$a\ \ne \ \cfrac{1}{\omega },\ c\ \ne \ \cfrac{1}{\omega }$$
⇒ a = ω, c = ω and b⊂ {ω, ω2}
Therefore, number of distinct solutions = 2