Solution:
SOLUTION
Let f (x) = k ( x - α ) ( x - β - i ) ( x - β + i )
= k ( x + α) ( ( x - β )2 + 1 )
f' (x) = k ( ( x - β )2 + 1 ) + k ( x - α ) ( 2 ( x - β ) )
⇒ f'(x) = k ( 3x2 - 2 ( α + 2β ) x + ( β2 + 2αβ + 1 )
? = 4 ( α + 2β )2 - 4.3 ( β2 + 1 + 2αβ )
? = 4 {α2 + β2 - 2αβ - 3 }
? = 4 { ( α - β )2 - 3 }
For equal or complex roots , We have
( α - β )2 - 3 ≤ 0
=|α−β|≤3√, where | α - β | = AD.
Hence maximum length of altitude AD is 3√ .