Solution:
Solution:
In all type of collisions, momentum of the system always remains constant. In perfectly inelastic collision, particles stick together and move with a common velocity.
Let this velocity is $$v_c$$. Then, initial momentum of system = final momentum of system
or m ( 2 v) $$ \widehat{ i} + 2 m ( v) \widehat{j} = ( m + 2 m) \, v_c $$
$$\therefore v_c = \frac{ 2}{ 3} ( v \widehat{ i } + v \widehat{ j} )$$
$$ | v_c | \, or \, v_c \, or \, speed = \sqrt{ \bigg( \frac{2}{3} v \bigg)^2 + \bigg( \frac{ 2}{ 3} v \bigg)^2 } $$
= $$ \frac{ 2 \sqrt 2 }{ 3} v $$
Initial kinetic energy
$$ K_i = \frac{1}{2} ( m) \, ( 2 v)^2 + \frac{1}{2} (2 m) \, (v)^2 = 3 mv^2 $$
Final kinetic energy
$$ K_ f = \frac{1}{2} ( 3m) \bigg( \frac{ 2 \sqrt 2 }{ 3 } v \bigg)^2 = \frac{ 4 }{ 3} mv^2 $$
Fractional loss = $$ \bigg( \frac{ K_i - K_f }{ K_i } \bigg) \times 100 $$
= $$ \Bigg [ \frac{ ( 3mv^2 ) - \bigg( \frac{ 4 }{ 3} mv^2 \bigg) }{ ( mv^2 ) } \Bigg ] \times 100 = 56 %$$