Solution:
Solution:
Given, $$\frac{U}{V} ∝ T^4$$
$$ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \frac{U}{V} =\alpha T^4 \, \, \, \, \, \, \, \, \, \, \, \, ...(i)$$
It is also given that, $$p=\frac{1}{3}\bigg(\frac{U}{V}\bigg)$$
$$\Rightarrow \, \, \, \, \frac{nR_0T}{V} =\frac{1}{3}(\alpha T^4) \, \, \, \, \, \, \, \, \, \, \, \, (R_0$$ = Gas constant)
or $$VT^3=\frac{3nR_0}{\alpha}=constant $$
$$\therefore \, \, \, \, \, \, \, \, \, \, \, \bigg(\frac{4}{3}\pi R^3\bigg)T^3 = constant $$
or $$or \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, $$ RT = constant
$$\therefore \, \, \, \, \, \, \, \, \, T ∝ \frac{1}{R}$$