Solution:
Solution:
Power of lens, $$P$$ (in dioptre) $$=\frac{100}{f{\text(in \,cm)}}$$
$$\therefore f = \frac{100}{10 }10\,cm$$
For biconvex lens, $$R_1 = + R, R_2= - R$$
According to lens maker's formula
$$\frac{1}{f} = \left(\mu-1\right)\left(\frac{1}{R}+\frac{1}{R}\right); \frac{1}{f} = \left(\mu-1\right)\left(\frac{2}{R}\right) $$
$$ \Rightarrow \frac{1}{10}= \left(\mu-1\right)\left(\frac{2}{10}\right)$$
$$ \Rightarrow \mu = \frac{1}{2}+1 = \frac{3}{2}$$