Solution:
Solution:
Since $$\tau =I {\frac {d\omega} {dt}}= mB\, sin\, \theta$$ $$\ldots\left(i\right)$$
NOW, $$\frac{d \omega}{dt}=\frac{d\omega}{d\theta} \frac{d\theta}{dt}$$
$$=\omega \frac{d\omega}{d\theta} \ldots\left(ii\right)$$
then, from $$\left(i\right)$$ and$$ \left(ii\right)$$
$$I\omega \frac{d\omega}{d\theta}=mB\,sin\,\theta ; I\omega d\omega=mBsin\theta d\theta$$
Integrating both sides
$$I \int\limits_{0}^{\omega_{f}} \omega\, d\omega=mB \int\limits_{0}^{45^{\circ}} sin\, \theta\,d\theta$$
$$I \left[ \frac{\omega^{2}}{2}\right]_{0}^{\omega_{f}} =mB\left[-cos \,\theta\right]_{0^{\circ}}^{45^{\circ}}$$
$$\frac{1}{2}I \omega_{f}^{2}=-mB\left[cos\,45^{\circ}-cos\,0^{\circ}\right]$$
$$=-mB\left[\frac{1}{\sqrt{2}}-1\right]=0.29\, mB$$
$$\omega_{f}^{2}=\frac{2\times0.29mB}{f}$$
$$=\frac{2\times0.29\times15\times4}{0.50}$$
$$\omega_{f}^{2}=69.6 ; \omega_{f} =\sqrt{69.6}$$
$$=8.34\, rad \, s^{-1}$$solution