Solution:
SOLUTION
Let
$$S=\underset{r=1}{\overset{n}{\mathop \sum }}\,\left( ar+b \right){{\omega }^{r-1}}=a\underset{r=1}{\overset{n}{\mathop \sum }}\,r{{\omega }^{r-1}}+b\underset{r=1}{\overset{n}{\mathop \sum }}\,{{\omega }^{r-1}}$$
= a { 1 + 2ω + 3ω2 + 4ω3 + ............. + nωn-1 } + b { 1 + ω + ω2 + ω3 + ............. + ωn-1 } ............(i)
As 1 + 2ω + 3ω2 + ............. + nωn-1 is an A.G.P.,
It is equal to $$\cfrac{1+\omega +{{\omega }^{2}}+\ldots \ldots \ldots \ldots .={{\omega }^{n-1}}}{1-\omega }-\cfrac{n{{\omega }^{n}}}{1-\omega }$$
Hence , $$S=a\left\{ \cfrac{1+\omega +{{\omega }^{2}}+\ldots \ldots \ldots \ldots .+{{\omega }^{n-1}}}{1-\omega }-\cfrac{n{{\omega }^{n}}}{1-\omega } \right\}$$
+ b { 1 + ω + ω2 + ω3 + ............. + ωn-1 }
$$=a\left\{ \cfrac{0}{1-\omega }-\cfrac{n}{1-\omega } \right\}+0=\cfrac{na}{\omega -1}$$
(∴ω is an imaginary nth root of unity )
∴ ωn = 1 and 1 + ω + ω2 + ............. + ωn-1 = 0